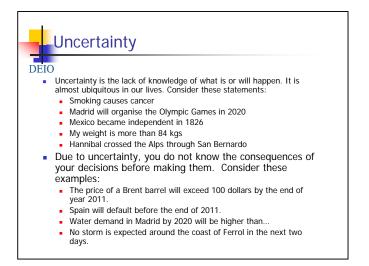
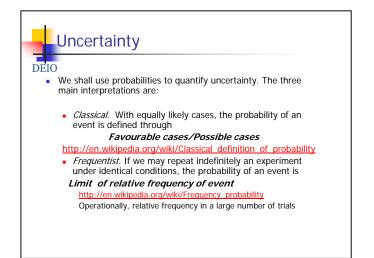
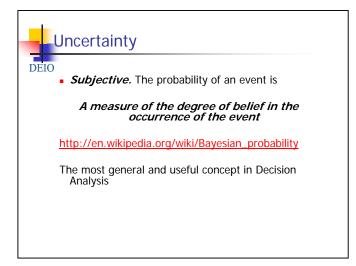


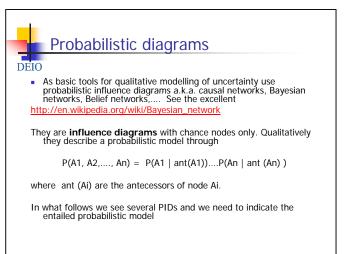
Scenarios

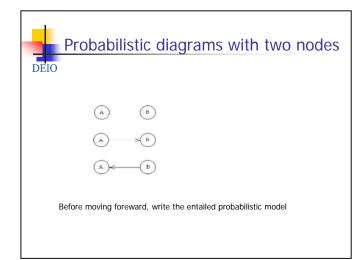

Handling uncertainty

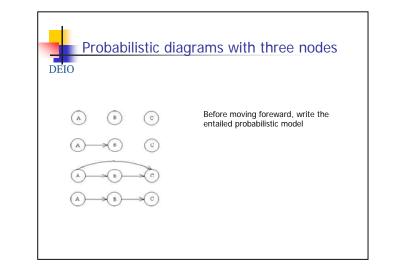

DEIQ We shall deal with issues in relation with modelling uncertainty. We assume a certain background typical of courses in Statistics. We shall focus on topics relevant for Decision Analysis, adopted from Bayesian Inference.

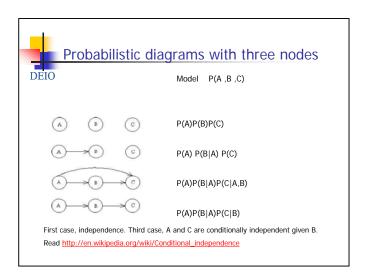

An intro is in

http://en.wikipedia.org/wiki/Bayesian_inference

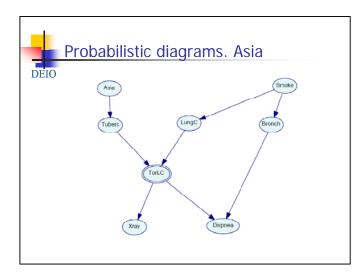

And in the paper Bayesian methods in conservation biology (first 4 pages)

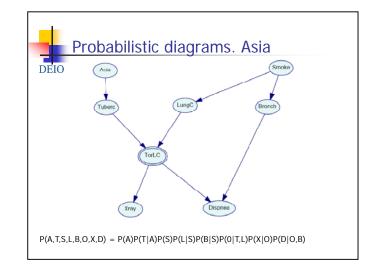





Uncertainty DEIO In general, when modeling uncertainty in a decision making problem, we need to deal with these issues: • Which are the key uncertainties? • Which are the possible outcomes of such uncertainties? • Which are the probabilities of various outcomes? • Which are the consequences entailed by such outcomes (for various alternatives)? We deal with them in the next slides

Probabilistic	c diagrams with two nodes Model for P(A,B)
(A) (B) P(A)P(B)
(A)>(B) P(A) P(B A)
(A) < (B)	P(B) P(A B)
First case, A and B are indeviceversa, via Bayes formul	ependent. We move from second to third, and a





We end up with an example referring to lung diseases, from Lauritzen and Spiegelhalter (1988):

A breathing condition (dyspnea) may be due to tuberculosis, lung cancer or bronchitis, none of them or sevral of them. A recent visit to Asia, increase the chances of tuberculosis, whereas smoking is a risk factor for lung cancer and bronchitis. The results of an X-ray may not discriminate between cancer and tuberculosis, as neither the presence or absence of dyspnea does.

Eliciting probabilities

Once the graphical model is built, we must elicit the probabilities. Sometimes we have access to good databases and may approximate probabilities based on relative frequencies. If not, we may use expert judgements...

Eliciting probabilities. The reference experiment

DEIO A 'ruler' to measure beliefs called reference experiment

- An experiment is a reference experiment for somebody if this person finds all the experiment results equally likely. For me, some reference experiments are:
 - A bag with six identical balls numbered 1,2,...,6. This allows me to measure probabilities with values in between 0, 1/6, 2/6, 3/6,4/6,5/6,6/6=1
 - Throw four balanced coins. This allows me to measure probabilities in between 0, 1/16, 2/16,..., 15/16, 16/16=1
 - A fortune wheel with 14 equal sectors, to measure probabilities in between 0, 1/14, 2/14,..., 14/14=1.

Eliciting probabilities. Protocol

DEIO
Once identified the calibration experiment, we use it to calibrate the probability of the event of interest. The idea is to gradually compare the event of interest with the reference event until we find one which is as likely. This is not easy to do for a beginner, but we may appeal to seevral protocols. One is available at

http://www-math.bgsu.edu/~albert/m115/probability/calibration.html

Eliciting probabilities. Biases

 At tonite's party, I intorduce you Roman, a shy guy. Is he a salesman or a librarian?

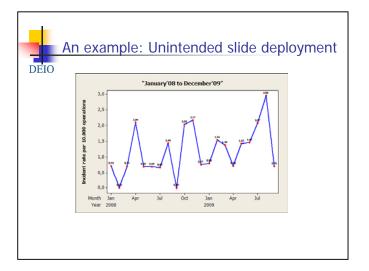
Eliciting probabilities. Biases

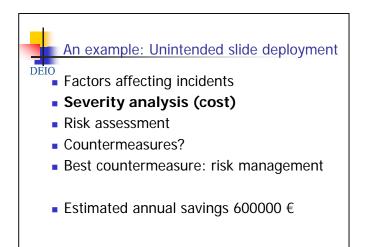
- Salespersons tend to be extrovert, say 9 out of 10 are extrovert.
 - However, there are many timid librarians, say 5 out of 10 are.
 - But, there are much more salespersons than librarians, say 10 salespersons per librarian.
 - Those who said that Roman was a librarian are ignoring such fact.
 - More on this by Simon French!!!

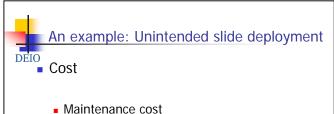
Updating probabilities

DEIO

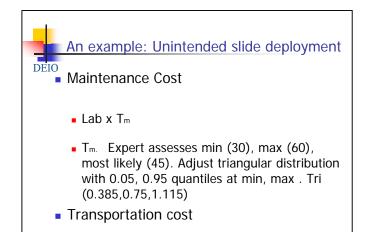
 Many times, we additionally have access to evidence (data) which provides information about the event of interest. Our beliefs are updated through Bayes formula

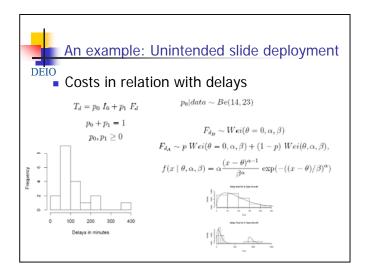

P(Event|Data)=P(Data|Event) P(Event)/ P(Data)


More on Bayes formula in

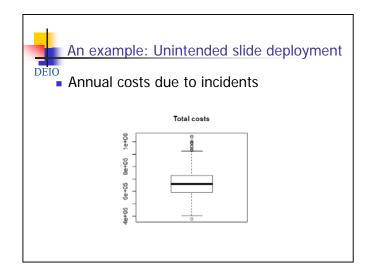

http://en.wikipedia.org/wiki/Bayes'_theorem

and in the paper Bayesian methods in conservation biology (just the first four pages)





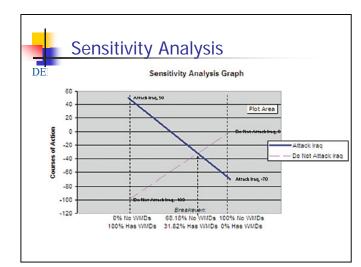
- Transportation cost
- Repair cost
- Ground delay associated costs

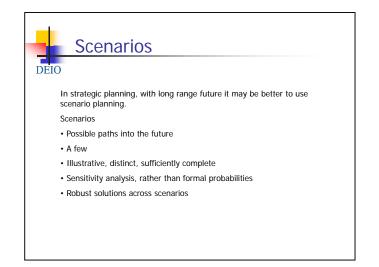


	<u>n e</u> z	xam	ple:	Uni	ntendeo	d sli	de d	dep	loyn	nent
DEIO M	ain	tena	ince	e cos	t					
			C_{n}	$q = q \times$	$C_m^i + (1 - $	$q) \times C$	ne m			
• q • C	m	_		_	(16,4)		10			
	Bf	Ba	Bw	B2/3		A1	A2	A3	A6	A6w 2210
Int. costs	1840		1630		Int. costs	4160 6429	4040 4850	2400		
	2605	2323	4571	4741	Ext. costs	0429	4600	5785	1423	4940
Ext. costs										
Ext. COSts		Bf Ba	Bw	B2/3		A1	A2	A3	A6 A	.6w
Incider		Bf Ba 17 4	Bw 1	B2/3 5	Incident		A2 2	A3 1		.6w
	its	201 2010	-		Incident: Paramete	s 4				

	A Flights	B Flights
	(Min, most likely, max)	(Min, most likely, max)
Passenger Hard Costs	(0.12, 0.19, 0.24)	(0.12, 0.19, 0.24)
Passenger Soft Costs	(0.06, 0.19, 0.22)	(0.06, 0.19, 0.22)
Marginal Crew Costs	(0.00, 14.00, 39.00)	(0.00, 7.90, 16, 59)
Marginal Maintenance Costs	(0.65, 0.81, 0.97)	(0.38, 0.47, 0.56)
Total Costs	(0.83, 15.19, 40.27)	(0.56, 8.75, 17.61)

DEIO				Consider the
DLIO		Has WMD	Does not have WMD	following simplified version of the Attack-Irak decision by the US. The main uncertainty is
	Attack Irak	Save costs due to future attacks	PPRR Disaster	whether Irak has or not WMD. See http://www.lionhrtp ub.com/orms/orms- 12-06/iraq.html
	Do not attack Irak	Bigger defense expend.	No change	


DEIO		ity Analy		Consequences
	0.75	0.25	Exp.Util	evaluated in billions of dollar We assess that
Attack Irak	50	-70	20	P(Irak WMD)=0.75. Optimal decision
No Attack Irak	-100	0	-75	- Attack


We are unsure about the probability that Irak has WMD. We analyse the impact over the optimal decision. We graph the expected utilities as a function of such probability which we call p.

50 p + (-70) (1-p) -100 p + 0 (1-p)

And compute the value of p for which both decisions have equal expected utility, which is approx. $P\!=\!0.32$

DEIO		ty Analy		
	0.75	0.25	0.32	0.32 is too far from our initial
Attack Irak	50	-70	20	assessment 0.75!!! Thus,
nuk				attacking Irak seems
No Attack Irak	-100	0	-75	uncontroversia I

